
Acta Crvsr (1995). B51,483-485 

'Perfect' Crystals in Crystal Structure Analysis 

BY MICHAEL HART 

Schuster Laboratory, Department of Physics, University of Manchester, Manchester M13 9PL, England 

(Received 15 October 1994; accepted 4 January 1995) 

483 

Abstract 

There is still a great deal to be learned by detailed studies 
of even the very simplest crystals about the foundations 
of X-ray diffraction. From the theoretical viewpoint there 
are two forms of 'perfect' crystals; the obvious case is 
that which is normally referred to as ideally perfect, 
exemplified by single crystal silicon, and the other less 
obvious form is the ideally imperfect sample which 
obeys precisely the kinematic theory of diffraction. 
Although such samples do not exist under normal 
laboratory X-ray conditions, at high X-ray energies real 
samples satisfy more and more closely the simple theory. 
With zero absorption and pure kinematic scattering 
becoming the norm at high energies, it seems possible 
that small structurally imperfect single crystals and even 
powdered samples could be used for sub-percentage 
measurements of structure factors. The necessary diffrac- 
tion conditions are explored in this paper. 

1. Introduction 

Gamma-ray diffraction is a widely recognized but little 
practised technique which has been thoroughly and 
productively explored using radioactive sources. Follow- 
ing the first demonstration of gamma-ray Bragg reflec- 
tion from crystals of rock salt by Rutherford & Andrade 
(1914) from radioactive radium sources, almost no 
studies of crystals were undertaken until the 1970s when 
sufficiently intense nuclear gamma-ray sources, activated 
by neutron irradiation in thermal reactors, became 
available (Freund, 1973; Schneider, 1980, 1981). Most 
of the early work was concerned with studies of micro- 
and macroscopic strain in single crystals and polycrystal- 
line materials, making use of the penetrating power of the 
hard radiation to study bulk material and using large 
samples so as to increase the detected intensity. 

Structural studies of single crystals were first made 
approximately 10 years ago. Graf & Schneider (1986) 
were the first to realise that structure factors can be 
measured with high precision in imperfect crystals 
because they effectively become ideally imperfect at 
high enough X-ray energies. At the other extreme, 
appropriate materials show Pendelltsung fringes with 
high contrast, corresponding to almost zero absorption, at 
these energies (Alkire, Yelon & Schneider, 1982; Alkire 
& Yelon, 1981) so that accurate structure factors can be 
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determined. These experiments used nuclear gamma 
lines at 468.1,316.5 and 103keV. 

Against this background, proposals were made to 
build high-energy beamlines at synchrotron radiation 
facilities (Freund, Hart & Schneider, 1988; Freund, 
1988). Techniques are under development for high- 
energy X-ray measurements and the first synchrotron 
radiation experiments at 150keV showed that multiple 
Bragg-reflection X-ray optics using channel-cut crystals 
can be conveniently used and that very high intensity and 
high signal-to-noise ratios can also be obtained (Hast- 
ings, Siddons, Berman & Schneider, 1989). 

1.1. Proposed experimental regime 

By working at a sufficiently high X-ray energy the 
advantages of low absorption, no extinction and reason- 
ably large crystals, can all be realised. With high- 
intensity beams from insertion devices on high-energy 
storage rings, structure factors become measurable with 
very high precision, allowing detailed studies of static 
and dynamic charge densities. 

2. Theoretical background 

2.1. Dynamical theory 

For the Laue case of transmission in a weakly 
absorbing perfect crystal, Zachariasen (1945) gives the 
reflectivity for a plane wave as 

114/I o ,~ exp( - lz t / cos  0)[sin2 (A { 1 + y2 }1/2 / { 1 + y2 }) 

+ sinhE0cA/{1 + y2}~/2)/{1 + y2}]. (1) 

The unfamiliar symbols are defined as 

A = zrt/A~ y = AOA~/d K = XIh/XRh 

A~) = ,~. COS O/XSh A ~  - -  /~ COS O/CXR h. 

Xlh and XRh are defined in Pinsker (1978) and values are 
given on pp. 95 and 97, respectively. Values of K (p. 
137), Ag (p. 54) and # (p. 87) are also given there. For 
silicon and AgKa I, p. 87 gives/z = 7.38cm -1 and for 
the 220 Bragg reflection XRh--1.179X l0 -6 and 
Xlh - -  0 . 0 0 6 2 5  X 10 -6  (p.  97). For a crystal 1001am 
thick, the absorption pre-factor in (1) is 0.929, the sin E 
factor is of the order unity and, for y -- 0, the sinh 2 term 
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is 0.0016. This last term is therefore negligible for thin 
silicon at energies above 22 keV. The intensity is, then, 
to better than 1%, given by 

where 

It.trio .~. [sin2(A[{1 + y2l]l/2)/{1 +y2l],  (2) 

A = e22[FHF_.C2]l/2t/mc2V[Yoyn] 1/2. (3) 

C = 1 for a-case and C = I cos 201 for zr-case polariza- 
tion. If we ignore the (small) changes in anomalous 
dispersion f '  then ,60 cx E cosO/C,  so that the scaling 
relations are 

y c x E c o s 0 / C  and A c x C / E c o s O .  (4) 

For low-order reflections at high energies cos 0 ~ 1, so 
that both y and A -~ scale linearly with energy. 

These examples show that at energies substantially 
higher than 22 keV the approximation of zero absorption 
is quite accurate. The corresponding integrated reflecting 
power is given by the following equations from 
Zachariasen's book, Z 3.165 and Z 3.167, as 

2A 

RL = (1/2)zr f Jo(x)dx = n" y]  Jz.+l(2A) 
0 n 

and R R = rrtanhA. (5) 

Fig. 1 shows graphs of these two results. For A < 0.8 the 
two results are indistinguishable. Thus, the crystal 
diffraction geometry has no effect on the integrated 
reflectivity. The same result can be seen analytically, as 
Zachariasen shows, for both tanh A and y ] .  Jzn+l  (2A) are 
equal to A for A << 1. Absorption is negligible too so that 
single-crystal diffraction in that size regime is determined 
entirely by the sample volume rather than by geometrical 
factors related to absorption and refraction. 

2.2. Kinematical theory 

So far we have explored the dynamical region in the 
thin crystal, the low absorption limit which is appropriate 
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Fig. 1. Integrated intensity in terms of  the parameter A; A----rr 
corresponds to t = ,4 o, see Table 1 for typical values. Upper curve is 
for the Bragg case, lower curve is for the Laue case. 

to the high-energy diffraction regime. We now assemble 
the corresponding results within the kinematic, single 
scattering, theoretical approximation and will later seek 
to merge the two results in an exploration of the 
experimental opportunities presented by high-energy, 
bright synchrotron X-ray sources. 

Microcrystal diffraction has been an area of intense 
activity in the last few years at synchrotron radiation 
facilities. However, the main thrust of the activity has 
been to explore the possibility of using tiny crystals, 
especially for materials of which large samples cannot be 
grown. The conclusion relevant to the present discussion 
is that samples as small as 1 lam in diameter do give 
observable intensities from existing synchrotron radia- 
tion sources and that the only important barriers to 
progress in the direction of using these and even smaller 
samples in diffraction experiments are the technical ones 
of sample handling and signal-to-noise ratio control. The 
following comments derive from a review by Rieck & 
Schulz (1991). 

A convenient, although not necessarily correct, 
starting point for the diffracted intensity, I in photons 
s -I, was given by Wtlfel (1975) 

I = (e2/mc2)2{[1 + cos 2 20]/[2 sin 20]}[(FhJV)223V]Io . 

(6) 

Here, I 0 is the flux at the sample in photons S -1  mm -2 
and the first term is the single electron-scattering power. 
The term in { } is the Lorentz polarization factor, which 
need not concern us here, while the third term is simply 
the scattered intensity per unit cell expressed with the 
unit cell volume V, in units of the wavelength 2. A 
practical problem with this formulation is that it 
represents the integrated reflection power in a situation 
where the mosaic spread of the sample and its relation- 
ship to the divergence and energy spread of the incident 
beam is not necessarily clearly defined or straight- 
forward. 

The conclusion of the calculations, backed by 
experiments using second-generation storage ring 
sources, is that the Bragg scattering from a 1 t.tm 3 sample 
should be measurable (i.e. should provide a counting rate 
of ca 1 s -~) with a present-day storage ring such as the 
ESRF [Rieck & Schulz (1991)]. It is important to 
remember that the X-ray scattered intensity from a 1 lam 
diameter X-ray beam by 1 lam of solid material is about 
the same as the scattered intensity from 1 mm of air. 

The kinematic theory results are valid up to a crystal 
thickness where absorption is significant or where double 
and multiple scattering must be taken into account. 

2.3. X-ray absorption 

At 40 keV the absorption coefficient for materials is 
less than ca 25cm2g -1. Taking a typical density of 
4 g c m  -3 gives an absorption length of ca 1001am. The 
highest value of the absorption coefficient is for those 
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elements which have K-edges at ca 40 keV (Z ~ 50) so 
that, with care, we can conclude that the X-ray 
absorption at energies above 40keV in 10-50t.tm sized 
crystals will be small or negligible. 

2.4. Many-beam diffraction 

One problem which arises in high-energy X-ray 
diffraction stems from the fact that the limiting sphere 
for Bragg reflection becomes large; many-beam simulta- 
neous reflection is the norm and must be taken into 
account (Chang, 1984). In the energy range up to 
lOOkeV the situation is not as complicated as in the 
electron case, because there is still a wavelength ratio of 
at least ten between the two probes. 

2.5. Experimental feasibility 

Equations (5) show that we require A < 0.8, corre- 
sponding to t < 0.2,6 o in order to work in the regime 
where both kinematical and dynamical theories con- 
verge. Again, for Ag Kot I radiation and for silicon, quartz 
and germanium Table 1 shows typical values (from 
Pinsker, 1978, Table 3.1). 

These results can be extrapolated to higher energies 
using the scaling factors given in (4), which indicate that 
the maximum crystal thickness may be around 10 gm or 
larger at energies above 22keV. Absorption is also 
negligible. Since the integrated intensity is proportional 
to the sample volume in this diffraction regime, the 
earlier results which show intensities of around 1 s -1 
from 1 l.tm 3 samples from existing storage rings (Rieck & 
Schulz, 1991) allow us to predict one thousand times 
higher intensities from the same sources for 10001am 3 
samples and much more intensity with focused beam- 
lines. In this case, unlike the microcrystai situation, the 
signal-to-noise ratio will be significantly improved in 
proportion to the sample volume. 

3. Concluding remarks 

Single crystals in the size range lO-50tam diameter 
examined at energies around 20-100keV or higher will 
diffract very high intensities from available third- 
generation synchrotron radiation sources; they will have 
no extinction, primary or secondary, no significant 

Table 1. Typical Bragg and A o values 

Material Bragg hkl 0.2 A 0 (~tm) 
Silicon 111 10.8 

220 9.3 
422 12.5 
333 18.6 
444 17.7 

Quartz 1010 28.8 
I 120 25.3 

Germanium I 1 I 4.7 
220 3.9 
422 5.2 
333 8.O 
444 7.4 

absorption and the diffracted intensity will not be 
shape-dependent. Both dynamical theory and kinematical 
theory will be exact. The predicted intensity is sufficient 
for measurements to a statistical accuracy of 0.1% and 
the formulae for the integrated reflection power in terms 
of the charge density should be of comparable precision. 
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